CVaR Robust Mean - CVaR Portfolio Optimization

نویسندگان

  • M. Salahi
  • F. Mehrdoust
  • F. Piri
چکیده

One of the most important problems faced by every investor is asset allocation. An investor during making investment decisions has to search for equilibrium between risk and returns. Risk ‎and ‎return are uncertain parameters in ‎the ‎suggested portfolio optimization models and should be estimated to solve the‎problem. The estimation might‎ lead ‎to ‎large ‎error in the final decision. One of the widely used and effective approaches for optimization with data uncertainty is robust optimization. In this paper, we present a new robust portfolio optimization technique for mean-CVaR portfolio selection problem under the estimation risk in mean return. We additionally use CVaR as risk measure, to measure the estimation risk in mean return. Moreover, to solve the model efficiently, we use the smoothing technique of Alexander et al. [1]. We compare the performance of the CVaR robust mean-CVaR model with robust mean-CVaR models using interval and ellipsoidal uncertainty sets. It is observed that the CVaR robust mean-CVaR portfolios are more diversified. Moreover, we study the impact of the value of confidence level on the conservatism level of a portfolio and also on the value of the maximum expected return of the portfolio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models

Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...

متن کامل

Fragility of CVaR in portfolio optimization

We evaluate conditional value-at-risk (CVaR) as a risk measure in data-driven portfolio optimization. We show that portfolios obtained by solving mean-CVaR and global minimum CVaR problems are unreliable due to estimation errors of CVaR and/or the mean, which are aggravated by optimization. This problem is exacerbated when the tail of the return distribution is made heavier. We conclude that CV...

متن کامل

Minimizing CVaR and VaR for a Portfolio of Derivatives∗

Value at risk (VaR) and conditional value at risk (CVaR) are the most frequently used risk measures in current risk management practice. As an alternative to VaR, CVaR is attractive since it is a coherent risk measure. We analyze the problem of computing the optimal VaR and CVaR portfolios. In particular, we illustrate that VaR and CVaR minimization problems for derivatives portfolios are typic...

متن کامل

Portfolio Optimization with Multivariate Copula: a Monte Carlo Study

According to Markowitz (1952) portfolio theory assumed that the investor has a concave utility function that expresses an attitude of risk aversion and managed to put portfolio selection based on two criteria, mean and variance. Other studies have improved this approach and following Basel II recommendations by using Value-at-Risk (VaR) as a standard risk measure in finance, Alexander & Baptist...

متن کامل

Optimal Dynamic Portfolio with Mean-CVaR Criterion

Value-at-risk (VaR) and conditional value-at-risk (CVaR) are popular risk measures from academic, industrial and regulatory perspectives. The problem of minimizing CVaR is theoretically known to be of a Neyman–Pearson type binary solution. We add a constraint on expected return to investigate the mean-CVaR portfolio selection problem in a dynamic setting: the investor is faced with a Markowitz ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013